Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling
https://cs.uwaterloo.ca/~jimmylin/publications/Rao_etal_EMNLP2019.pdf
2 HCAN: Hybrid Co-Attention Network
three major components: (1) a hybrid encoder (2) a relevance matching module (3) a semantic matching module
2.1 Hybrid Encoders
hybrid encoder module that explores three types of encoders: deep, wide, and contextual
query and context words :$\{w_1^q,w_2^q,…,w_n^q\},\{w_1^c,w_2^c,…,w_m^c\}$, embedding representations $\textbf{Q}\in \mathbb{R}^{n\times L},\textbf{C}\in \mathbb{R}^{m\times L}$
Deep Encoder
$\textbf{U}$表示$\textbf{Q},\textbf{C}$
Wide Encoder
Unlike the deep encoder that stacks multiple convolutional layers hierarchically, the wide encoder organizes convolutional layers in parallel, with each convolutional layer having a different window size k
Contextual Encoder
2.2 Relevance Matching
2.3 Semantic Matching
2.4 Final Classification
Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling
1.Enhanced-RCNN An Efficient Method for Learning Sentence Similarity
2.bm25
3.文本匹配
4.词语的文本相似度